Expedient Non-Malleability Notions for Hash Functions

CT-RSA 2011

Paul Baecher, Marc Fischlin, Dominique Schröder

Darmstadt University of Technology, supported by DFG Emmy Noether Program

Introduction: Non-Malleability

- Introduced formally by [DDN00, DDN91]
- in a nutshell, encryption case:

- commitments, encryption, zero-knowledge, ...
- what about hash functions?
 - fundamental difference no private randomness

Non-Malleable Hash Functions

- Given a hash value, output another value such that related preimages exist
- i.e. given H and H(m), output $H(m^*)$ s.t. $(m, m^*) \in R$

Example application: naive authentication

 $(H(\text{secret}||\text{nonce}), \text{nonce}) \longrightarrow (H(\text{secret}||\text{nonce}^*), \text{nonce}^*)$

• First formal foundation in [BCFW09], ASIACRYPT 2009 Foundations of non-malleable hash and one-way functions

The Simulation Approach

• Simulation-based non-malleability of hash functions [BCFW09]

For every adversary \mathcal{A} there exists a simulator \mathcal{S} such that the success probabilities of the following experiments are equal

Adversary's exp.

$$x \leftarrow \mathcal{X}$$

 $y \leftarrow \mathcal{H}(x)$
 $y^* \leftarrow \mathcal{A}(y)$
 $x^* \leftarrow \mathcal{A}(x)$
return $R(x, x^*)$

Simulator's exp. $x \leftarrow \mathcal{X}$

 $x^* \leftarrow \mathcal{S}()$ return $R(x, x^*)$

The Simulation Approach

• Simulation-based non-malleability of hash functions [BCFW09]

For every adversary \mathcal{A} there exists a simulator \mathcal{S} such that the success probabilities of the following experiments are equal

Adversary's exp.Simulator's exp.
$$x \leftarrow \mathcal{X}$$
 $x \leftarrow \mathcal{X}$ $y \leftarrow \mathcal{H}(x)$ $x \leftarrow \mathcal{X}$ $y^* \leftarrow \mathcal{A}(y)$ $x^* \leftarrow \mathcal{S}()$ return $R(x, x^*)$ return $R(x, x^*)$

- in other words: learning the image y does not help to produce the related value at all
- note: simplified for exposition

The Simulation Approach – Details

- Quite cumbersome for non-theorists
- very strong notion, function must not leak any information
 - otherwise not simulatable
- proving malleability: need to show $\exists \mathcal{A} \forall \mathcal{S} \dots$
 - for <u>all</u> simulators
- the case of H(x) = c
 - non-malleable under this definition!

Our Notion – Approach

Our Notion – Details

H non-malleable iff for all adversaries ${\cal A}$ the win probability in the following game is negligible

NM-Game

$$x \leftarrow \mathcal{X}$$

 $y \leftarrow H(x)$
 $(y^*, \phi) \leftarrow \mathcal{A}(y)$
Return 1 iff
 $H(\phi(x)) = y^*$

- Transformation function ϕ

On Transformation Functions

Adversary specifies function

- arbitrary functions do not work (consider constant)
- need to restrict this function to some class

On Transformation Functions

Adversary specifies function

- arbitrary functions do not work (consider constant)
- need to restrict this function to some class

Useful classes

- group-induced transformations
- for some group (G, \odot) define $\Phi^{\odot} = \{\phi_{\delta} : \delta \in G\}$ where $\phi_{\delta}(x) = x \odot \delta$
- e.g. induces "bit-flips" for $(\{0,1\}^\ell,\oplus)$
- originates from related-key attacks on PRFs, [Luc04, BC10]

Comparing Both Notions

We have

- simulation-based non-malleability (SNM)
- game-based non-malleability (GNM)

our notion is strictly weaker:

- (1) SNM \Rightarrow GNM
- (2) GNM \Rightarrow SNM

intuitions

- (1) GNM-adversary can be transformed easily into SNM-adversary, but simulator cannot succeed without contradicting min-entropy
- (2) consider a function that leaks one bit, i.e. $H(x) = F(x)||x_1|$

GNM is strictly weaker than SNM, but

- can capture a large class of typical attacks
- may be sufficient for proving security of a scheme
- usually easier to handle, easier to verify/refute

Examining Merkle-Damgård

- Recall: $H(m_0||...||m_\ell) = h(...h(h(IV, m_0), m_1)..., m_\ell)$
- clearly malleable for appending transformations (Φ^{||}), even if *h* is modeled as a RO
 - · also malleable in the simulation sense

Examining Merkle-Damgård

- Recall: $H(m_0||...||m_\ell) = h(...h(h(IV, m_0), m_1)..., m_\ell)$
- clearly malleable for appending transformations $(\Phi^{||})$, even if *h* is modeled as a RO
 - also malleable in the simulation sense
- However, for a different (length-preserving) class $\Phi^\oplus\colon$
- *h* modeled as $\mathsf{RO} \Rightarrow H$ is Φ^{\oplus} -non-malleable
 - alleged adversary queries all intermediate values and outputs $\boldsymbol{\delta}$
 - reduction reconstructs original message, contradicts min-entropy

- Is non-malleability robust?
- consider $h(m) = f(m) \oplus m$ where f is non-malleable
- assuming uniform input distributions, non-malleability of h does not necessarily follow

- Is non-malleability robust?
- consider $h(m) = f(m) \oplus m$ where f is non-malleable
- assuming uniform input distributions, non-malleability of h does not necessarily follow

 $f(m_0||m_1) = \mathcal{O}(m_0) \oplus (g(m_0)||g(m_1)) \mid m_0 \oplus m_1$

- Is non-malleability robust?
- consider $h(m) = f(m) \oplus m$ where f is non-malleable
- assuming uniform input distributions, non-malleability of h does not necessarily follow

 $f(m_0||m_1) = \mathcal{O}(m_0) \oplus (g(m_0)||g(m_1)) \mid m_0 \oplus m_1$

 $f(m_0||m_1) \oplus m_0||m_1 = m_0 \oplus \mathcal{O}(m_0) \oplus (g(m_0)||g(m_1)) || m_0$

- Is non-malleability robust?
- consider $h(m) = f(m) \oplus m$ where f is non-malleable
- assuming uniform input distributions, non-malleability of h does not necessarily follow

$$f(m_0||m_1) = \mathcal{O}(m_0) \oplus (g(m_0)||g(m_1)) \mid m_0 \oplus m_1$$

 $f(m_0||m_1) \oplus m_0||m_1 = m_0 \oplus \mathcal{O}(m_0) \oplus (g(m_0)||g(m_1)) || m_0$

• MMO (e.g. Skein) is structurally similar – but f is a cipher

Bellare-Rogaway Encryption Scheme

- IND-CCA encryption scheme from a trapdoor permutation and two random oracles
- instantiating one oracle with $\oplus\text{-nm}$ hash function retains security
 - improvement over [BCFW09]
- also need preimage hiding property (implied in [BCFW09])

Rehash

- Non-malleability of hash functions is quite new
- simulation-based definition is strong, but comes with deficits
- · expedient and useful game-based definition
- relevant applications and constructions

The End

Thank you!

?

References

	-	
н		
н		

Mihir Bellare and David Cash.

Pseudorandom functions and permutations provably secure against related-key attacks.

In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages 666–684, Santa Barbara, CA, USA, August 15–19, 2010. Springer, Berlin, Germany.

Alexandra Boldyreva, David Cash, Marc Fischlin, and Bogdan Warinschi.

Foundations of non-malleable hash and one-way functions.

In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 524–541, Tokyo, Japan, December 6–10, 2009. Springer, Berlin, Germany.

Danny Dolev, Cynthia Dwork, and Moni Naor.

Non-malleable cryptography.

In 23rd Annual ACM Symposium on Theory of Computing, pages 542–552, New Orleans, Louisiana, USA, May 6–8, 1991. ACM Press.

Danny Dolev, Cynthia Dwork, and Moni Naor.

Nonmalleable cryptography.

SIAM Journal on Computing, 30(2):391-437, 2000.

Stefan Lucks.

Ciphers secure against related-key attacks.

In Bimal K. Roy and Willi Meier, editors, Fast Software Encryption – FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 359–370, New Delhi, India, February 5–7, 2004. Springer, Berlin, Germany.