## Ideal-Cipher (Ir)reducibility for Blockcipher-Based Hash Functions

Paul Baecher, Pooya Farshim, Marc Fischlin, Martijn Stam

University of Bristol \& Darmstadt


Cryptoplexity
HeisenbergProgramm
Cryptography \& Complexity Theory Technische Universitaat Darmstadt www.cryptoplexity.de

## Introduction

## Hash Functions in Real Life

$$
\{0,1\}^{*}
$$


$\{0,1\}^{n}$

## Hash Functions in Real Life

$$
\{0,1\}^{k n} \text { for all } k \in \mathbb{N}
$$



## Hash Functions in Real Life

Zoom: 3x


## Hash Functions in Real Life

Zoom: 3x

scope of this paper: blockcipher-based compression functions

## Blockcipher-Based Compression Functions

- 64 basic variants using XOR operations [PGV94]
- 12 provably secure: collision and preimage resistance [BRSS10]
- ... in the ideal-cipher model



## Blockcipher-Based Compression Functions

- 64 basic variants using XOR operations [PGV94]
- 12 provably secure: collision and preimage resistance [BRSS10]
- ... in the ideal-cipher model



## Blockcipher-Based Compression Functions

- 64 basic variants using XOR operations [PGV94]
- 12 provably secure: collision and preimage resistance [BRSS10]
- ... in the ideal-cipher model

- only have AES, which function is good?


## Ideal-Cipher Reducibility

## Ideal-Cipher Reducibility

- based on (random-)oracle reducibility [BF11]
- relate compressions functions to each other w.r.t. to the blockcipher
- using a reductionist approach


## Ideal-Cipher Reducibility

- based on (random-)oracle reducibility [BF11]
- relate compressions functions to each other w.r.t. to the blockcipher
- using a reductionist approach
"any blockcipher E that makes $g^{\mathrm{E}}$ secure also makes $f^{\mathrm{E}}$ secure" or
"the blockcipher E in $f$ reduces to the blockcipher E in $g$ "


## Ideal-Cipher Reducibility Defined

Def.: direct reducibility
"any blockcipher E that
makes $g^{E}$ secure also makes $f^{E}$ secure"

Def.: free reducibility
"there exists T s.t. any
blockcipher E that makes $g^{E}$ secure also makes $f^{T^{E}}$ secure"

## Ideal-Cipher Reducibility Defined

Def.: direct reducibility
"any blockcipher E that makes $g^{E}$ secure also makes $f^{\text {E }}$ secure"

Def.: free reducibility
"there exists T s.t. any blockcipher E that makes $g^{E}$ secure also makes $f^{\top^{E}}$ secure"

- transformation T should be
- simple (efficient, deterministic, stateless)
- explicitly given in a proof
- note: simplified for exposition ( E is actually a distribution)


## Revisiting the 12 PGV Functions

$$
\text { PGV } 1 \text {-group }
$$


direct reducibility within

$$
\mathrm{PGV}_{2} \text {-group }
$$


direct reducibility within

## Revisiting the 12 PGV Functions



## Revisiting the 12 PGV Functions



$$
\mathrm{PGV}_{2} \text {-group }
$$

reducibility

(free)

## (Freely) Reducing $\mathrm{PGV}_{2}$ to $\mathrm{PGV}_{1}$



$$
\mathrm{E}(K, M) \oplus M
$$

$$
\mathrm{E}(K, M) \oplus M \oplus K
$$

- there exists $T^{E}$ s.t. for any $E \quad P G V V_{1}^{E}$ secure $\Rightarrow P G V_{2}^{T^{E}}$ secure


## (Freely) Reducing $\mathrm{PGV}_{2}$ to $\mathrm{PGV}_{1}$



$$
\mathrm{E}(K, M) \oplus M
$$


$\mathrm{E}(K, M) \oplus M \oplus K$

- there exists $T^{E}$ s.t. for any $E \quad P G V_{1}^{E}$ secure $\Rightarrow P G V_{2}^{T E}$ secure
- $\mathrm{T}^{\mathrm{E}}(K, M):=\mathrm{E}(K, M) \oplus K$

$\mathrm{T}^{\mathrm{E}}(K, M) \oplus M \oplus K$

$\mathrm{E}(K, M) \oplus M$


## Revisiting the 12 PGV Functions



## PGV Groups are Incomparable

- no direct reduction from $\mathrm{PGV}_{1}$ to $\mathrm{PGV}_{2}$ (or vice versa)
- there exist blockciphers that make one secure but not the other
- groups are incomparable, no clear "winner"


## Beyond PGV

## Double-Block-Length (DBL) Compression Functions

- compression functions $\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$
- two blockcipher invocations, double key lengths (2n)



## Double-Block-Length (DBL) Compression Functions

- compression functions $\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$
- two blockcipher invocations, double key lengths (2n)

- upper part $\equiv \mathrm{PGV}_{1}$
- hence direct reducibility (only!) for collision resistance


## Double-Block-Length (DBL) Compression Functions

- compression functions $\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$
- two blockcipher invocations, double key lengths (2n)

- upper part $\equiv \mathrm{PGV}_{1}$
- hence direct reducibility (only!) for collision resistance


## Double-Block-Length (DBL) Compression Functions

- compression functions $\{0,1\}^{3 n} \rightarrow\{0,1\}^{2 n}$
- two blockcipher invocations, double key lengths (2n)

- upper part $\equiv \mathrm{PGV}_{1}$
- hence direct reducibility (only!) for collision resistance
- preimage resistance: separation
- idea: either output "leaks" one half of the preimage


## Further Results on DBL Compression Functions

- no direct reducibility among any DBL compression function
- reducibility to $\mathrm{PGV}_{1}$ under free transformations
- key length extension via chaining
- no free reducibility from any PGV to any DBL
- ... as expected?
- DBL constructions thus rely on weaker assumptions
- i.e., not only better because of double output length


## Further Results on DBL Compression Functions

- no direct reducibility among any DBL compression function
- reducibility to $\mathrm{PGV}_{1}$ under free transformations
- key length extension via chaining
- no free reducibility from any PGV to any DBL
- ... as expected?
- DBL constructions thus rely on weaker assumptions
- i.e., not only better because of double output length


## Sketch: No Free Reducibility from PGV to DBL

- import techniques from [Pie08] on combiner impossibility
- meta reduction combined with generic bounds on attacking collision resistance [BK04]
- rule out existence of ( $\mathrm{T}, \mathcal{R}$ )
- $\mathcal{R}$ breaks DBL given PGV adversary:


## Sketch: No Free Reducibility from PGV to DBL

- import techniques from [Pie08] on combiner impossibility
- meta reduction combined with generic bounds on attacking collision resistance [BK04]
- rule out existence of ( $\mathrm{T}, \mathcal{R}$ )
- $\mathcal{R}$ breaks DBL given PGV adversary:



## Sketch: No Free Reducibility from PGV to DBL

- import techniques from [Pie08] on combiner impossibility
- meta reduction combined with generic bounds on attacking collision resistance [BK04]
- rule out existence of ( $\mathrm{T}, \mathcal{R}$ )
- $\mathcal{R}$ breaks DBL given PGV adversary:

note: restrictions and fees apply


## The End

Thank you!

## References

Paul Baecher and Marc Fischlin.
Random oracle reducibility.
In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 21-38, Santa Barbara, CA, USA, August 14-18, 2011. Springer, Berlin, Germany.

Mihir Bellare and Tadayoshi Kohno.
Hash function balance and its impact on birthday attacks.
In Christian Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science, pages 401-418, Interlaken, Switzerland, May 2-6, 2004. Springer, Berlin, Germany.

John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam.
An analysis of the blockcipher-based hash functions from PGV.
Journal of Cryptology, 23(4):519-545, October 2010.
Bart Preneel, René Govaerts, and Joos Vandewalle.
Hash functions based on block ciphers: A synthetic approach.
In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO'93, volume 773 of Lecture Notes in Computer Science, pages 368-378, Santa Barbara, CA, USA, August 22-26, 1994. Springer, Berlin, Germany.

Krzysztof Pietrzak.
Compression from collisions, or why CRHF combiners have a long output.
In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages 413-432, Santa Barbara, CA, USA, August 17-21, 2008. Springer, Berlin, Germany.

