
Ideal-Cipher (Ir)reducibility for
Blockcipher-Based Hash Functions

EUROCRYPT 2013

Paul Baecher, Pooya Farshim, Marc Fischlin, Martijn Stam

University of Bristol & Darmstadt
University of Technology; supported by
DFG Heisenberg and Center For
Advanced Security Research Darmstadt
(CASED)



Introduction
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Hash Functions in Real Life
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Hash Functions in Real Life Zoom: 2x
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scope of this paper: blockcipher-based compression functions
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Blockcipher-Based Compression Functions
• 64 basic variants using XOR operations [PGV94]

• 12 provably secure: collision and preimage resistance [BRSS10]
• . . . in the ideal-cipher model

1 4 2 3

5 8 6 7

9 12 10 11

5



Blockcipher-Based Compression Functions
• 64 basic variants using XOR operations [PGV94]

• 12 provably secure: collision and preimage resistance [BRSS10]
• . . . in the ideal-cipher model

1 4 2 3

5 8 6 7

9 12 10 11

5



Blockcipher-Based Compression Functions
• 64 basic variants using XOR operations [PGV94]

• 12 provably secure: collision and preimage resistance [BRSS10]
• . . . in the ideal-cipher model
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• only have AES, which function is good?
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Ideal-Cipher Reducibility
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Ideal-Cipher Reducibility

• based on (random-)oracle reducibility [BF11]

• relate compressions functions to each other w.r.t. to the
blockcipher

• using a reductionist approach

7



Ideal-Cipher Reducibility

• based on (random-)oracle reducibility [BF11]

• relate compressions functions to each other w.r.t. to the
blockcipher

• using a reductionist approach

“any blockcipher E that makes gE secure also makes f E secure”

or

“the blockcipher E in f reduces to the blockcipher E in g”
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Ideal-Cipher Reducibility Defined

Def.: direct reducibility

“any blockcipher E that
makes gE secure also makes
f E secure”

Def.: free reducibility

“there exists T s.t. any
blockcipher E that makes gE

secure also makes f T
E
secure”
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Ideal-Cipher Reducibility Defined

Def.: direct reducibility

“any blockcipher E that
makes gE secure also makes
f E secure”

⇒
T := id

Def.: free reducibility

“there exists T s.t. any
blockcipher E that makes gE

secure also makes f T
E
secure”

• transformation T should be
• simple (efficient, deterministic, stateless)
• explicitly given in a proof

• note: simplified for exposition (E is actually a distribution)
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Revisiting the 12 PGV Functions
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(Freely) Reducing PGV2 to PGV1

1

E(K ,M)⊕M

2

E(K ,M)⊕M ⊕ K

• there exists TE s.t. for any E PGVE
1 secure ⇒ PGVTE

2 secure

10



(Freely) Reducing PGV2 to PGV1

1

E(K ,M)⊕M

2

E(K ,M)⊕M ⊕ K

• there exists TE s.t. for any E PGVE
1 secure ⇒ PGVTE

2 secure

• TE(K ,M) := E(K ,M)⊕ K

E

T

TE(K ,M)⊕M ⊕ K

≡ E

T

E(K ,M)⊕M
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PGV Groups are Incomparable

• no direct reduction from PGV1 to PGV2 (or vice versa)
• there exist blockciphers that make one secure but not the other

• groups are incomparable, no clear “winner”
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Beyond PGV
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Double-Block-Length (DBL) Compression Functions

• compression functions {0, 1}3n → {0, 1}2n

• two blockcipher invocations, double key lengths (2n)
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• upper part ≡ PGV1

• hence direct reducibility (only!) for collision resistance
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Double-Block-Length (DBL) Compression Functions

• compression functions {0, 1}3n → {0, 1}2n

• two blockcipher invocations, double key lengths (2n)

E

E

B1

B2

A1

A2

A3

• upper part ≡ PGV1

• hence direct reducibility (only!) for collision resistance
• preimage resistance: separation
• idea: either output “leaks” one half of the preimage
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Further Results on DBL Compression Functions

• no direct reducibility among any DBL compression function

• reducibility to PGV1 under free transformations
• key length extension via chaining

• no free reducibility from any PGV to any DBL
• . . . as expected?

• DBL constructions thus rely on weaker assumptions
• i.e., not only better because of double output length
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Sketch: No Free Reducibility from PGV to DBL

• import techniques from [Pie08] on combiner impossibility

• meta reduction combined with generic bounds on attacking
collision resistance [BK04]

• rule out existence of (T,R)
• R breaks DBL given PGV adversary:
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Sketch: No Free Reducibility from PGV to DBL

• import techniques from [Pie08] on combiner impossibility

• meta reduction combined with generic bounds on attacking
collision resistance [BK04]

• rule out existence of (T,R)
• R breaks DBL given PGV adversary:

DBL

E
T

R

A

M

ask θ(2n/2) queries

security: θ(2n) queries

possibly programming

note: restrictions and fees apply
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The End

Thank you!

?
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