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Idealized Models

• problem: cannot prove scheme/protocol secure /

• solution (not really. . . )
• construction has oracle access to some primitive
• probabilistic security statement over random choice of the
primitive’s implementation

random-oracle model (ROM, [BR93])

• choice: set of functions

• example: {0, 1}n → {0, 1}n

ideal-cipher model (ICM, [Sha49])

• choice: set of keyed permutations
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ROM
?
≡ ICM

[CDMP]

2005

[CPS]

2008

[HKT]

2011

is the random-oracle model equivalent to the ideal-cipher model?

• ideal cipher ⇒ random oracle [CDMP05]

• random oracle ⇒∗ ideal cipher [CPS08]

• random oracle ⇒ ideal cipher [HKT11]

thus, ROM ≡ ICM

but what is “≡”?
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Equivalence Through Indifferentiability

[MRH]

2004

[CDMP]

2005

[CPS]

2008

[HKT]

2011

• composition theorem by
Maurer, Renner, and
Holenstein [MRH04]

• proof in Π model ;

proof in π model, given
indiff. construction Gπ

real

πG

ideal

Π S

D

• e.g., G : constructed “random oracle”; π: ideal cipher;
Π: real random oracle

• ask for simulator S such that (Gπ, π)
c
≈ (Π,SΠ)
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• indifferentiability is not applicable for
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Limitations of Indifferentiability

[MRH]

2004

[CDMP]

2005

[CPS]

2008

[HKT, RSS]

2011

reset indiff.
• indifferentiability is not applicable for
multi-stage games with ideal primitives [RSS11]

• . . . , x ← A1, . . . , y ← A2, . . .
• e.g. deterministic/hedged/efficiently-searchable/public-key
encryption, KDM/RKA security, non-malleable hashing,
proof-of-storage security, anything with leakage. . .

• problem (roughly): distinct stages result in distinct simulators,
distinct simulators are inconsistent

• allow the distinguisher to reset the simulator, reset
indifferentiability [RSS11]
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ROM
?
≡ ICM, Revisited

• ROM ≡ ICM for single-stage games

• constructions in [CDMP05, CPS08, HKT11] are not reset
indifferentiable

• i.e., do not apply to multi-stage games

• reset-indifferentiable constructions cannot be domain
extending [LAMP12, DGHM13]

• assuming that ROs have infinite domain, ICM 6⇒ ROM
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In This Work

• a different notion to characterize reset indifferentiability —
multi-stage indifferentiability

1. under reset indifferentiability, ROM 6≡ ICM
• i.e., ICM 6⇒ ROM and ROM 6⇒ ICM
• (no result for length-preserving constructions)

2. “Duality Lemma”: two primitives are either equivalent or
incomparable

3. n-reset indifferentiability ≡ 1-reset indifferentiability
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Multi-Stage Indifferentiability

real

πG

ideal

Π S

D

• instead of resettable simulators, consider stateless ones

• think “reset after each query”

• equivalent to reset indifferentiability

• simulators are pseudo deterministic—why?
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• there is no domain-extending construction of a RO from an IC

• consider a length-doubling construction Gπ

• let distinguisher D sample m← {0, 1}ℓ and locally evaluate
G (·)(m), then query m on left-hand side interface

real

πG

ideal

Π S

D

Gm

• real world: identical results

• ideal world
• S needs to query Π on m
• gets k inputs of size

ℓ
2 < ℓ = |Π(m)|

• but k · 2ℓ/2 ≪ 2ℓ

• ⇒ very unlikely to “hit” m

reliably

• note: choice of primitives arbitrary
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No Domain Extension (cont’d)

• ICM 6⇒ ROM (also shown by [LAMP12, DGHM13] for one-bit
extension)

• ROM 6⇒ ICM
• typical Feistel constructions are length doubling
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• ICM 6⇒ ROM (also shown by [LAMP12, DGHM13] for one-bit
extension)

• ROM 6⇒ ICM
• typical Feistel constructions are length doubling

• what about domain shrinking?
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The Duality Lemma

• what about domain shrinking?

observation:

• simulators are pseudo deterministic

• constructions are typically (pseudo) deterministic, e.g. hash
function, block cipher, . . .

• can switch roles!
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The Duality Lemma (cont’d)

given two ideal primitives π1 and π2, one of the following holds

1. π1 and π2 are equivalent

2. π1 and π2 are incomparable
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The Duality Lemma (cont’d)

given two ideal primitives π1 and π2, one of the following holds

1. π1 and π2 are equivalent
• there exist constructions G1 and G2 such that Gπ2

1 (resp. Gπ1
2 )

is multi stage indifferentiable from π1 (resp. π2); i.e., π1 ⇒ π2

and π2 ⇒ π1

2. π1 and π2 are incomparable
• no multi-stage indifferentiable constructions from each other
exist; i.e., π1 6⇒ π2 and π2 6⇒ π1

• positive (resp. negative) result in one direction translates to
other direction

• no domain-extending constructions ⇒ no domain-shrinking
constructions; ROM and ICM are incomparable
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Do Weaker Notions Help?

• reset indifferentiability permits poly. many resets

• Luykx et al. [LAMP12] consider n-reset indifferentiability
• n resets compose with n stages
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Do Weaker Notions Help?

• reset indifferentiability permits poly. many resets

• Luykx et al. [LAMP12] consider n-reset indifferentiability
• n resets compose with n stages

• turns out n-reset = n′-reset = 1-reset

• idea: at least one reset must be “critical”, find it
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Eliminating Resets

consider the distinguisher Dn on randomness r (max. n resets)

Dn(r)
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Eliminating Resets

consider the distinguisher Dn on randomness r (max. n resets)

Dn(r)
q1

a1

q2

a2

q3

a3

q4

a4

q5

a5

construct D1

Dn

D1
D1(r)

q1 q2 q3 q4 q5 q4 q5

a1 a2 a3 a4 a5 a
′

4 a
′

5

let D1’s output be (a4, a5)
?
= (a′4, a

′

5)

next, consider Dn−1
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Summary

take-home message

• is the ROM equivalent to the ICM?

• answer—depends on “equivalent”
• for composing single-stage games: ✓

• multi stage / non length preserving: ✗

• multi stage / length preserving:

open question
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Summary

take-home message

• is the ROM equivalent to the ICM?

• answer—depends on “equivalent”
• for composing single-stage games: ✓

• multi stage / non length preserving: ✗

• multi stage / length preserving: ???

open question
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The End

Thank you!

?
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Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin.

The random oracle model and the ideal cipher model are equivalent.
In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 1–20. Springer, August 2008.

Gregory Demay, Peter Gazi, Martin Hirt, and Ueli Maurer.

Resource-restricted indifferentiability.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
664–683. Springer, May 2013.

Thomas Holenstein, Robin Künzler, and Stefano Tessaro.

The equivalence of the random oracle model and the ideal cipher model, revisited.
In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98. ACM Press, June 2011.

Atul Luykx, Elena Andreeva, Bart Mennink, and Bart Preneel.

Impossibility results for indifferentiability with resets.
Cryptology ePrint Archive, Report 2012/644, 2012.
http://eprint.iacr.org/.

Ueli M. Maurer, Renato Renner, and Clemens Holenstein.

Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 21–39. Springer, February 2004.

18

http://eprint.iacr.org/


References II

Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton.

Careful with composition: Limitations of the indifferentiability framework.
In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506. Springer, May
2011.

Claude E. Shannon.

Communication theory of secrecy systems.
Bell Systems Technical Journal, 28(4):656–715, 1949.

19


