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Introduction
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The Cryptographic Zoo

OWF

PRG
OWP

PRF

PKE

SIG

MAC

COM

CRHF

MPC

ZK

PRP

KA

• basic issues in cryptography
• what can be built from what?
• how (efficient)?
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A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]
constr.

Question 1: what is G [f ]?
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A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]
constr.

Question 1: what is G [f ]?

• construction G uses f as an oracle (G f )

• construction G uses f in some constricted way

• construction G uses f ’s code

• ???
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A Typical Theorem in Cryptography

Theorem: Let f be a P

e.g. OWP

. Then construction G [f ] is a Q

e.g. PRG

.

f G [f ]
constr.

(corollary: if P exists, then Q exists.)

Question 1: what is G [f ]?

• construction G uses f as an oracle (G f )

• construction G uses f in some constricted way

• construction G uses f ’s code

• ???
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Proving the Theorem

Theorem: Let f be a P . Then construction G [f ] is a Q.

f G [f ]

S[A, f ] A

constr.

red.

• almost always: proof by reduction (show the contrapositive)

• transform an attack on G into an attack on f

• if algorithm A breaks G , then algorithm S[A, f ] breaks f
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Proving the Theorem

Theorem: Let f be a P . Then construction G [f ] is a Q.

f G [f ]

S[A, f ] A

constr.

red.

• almost always: proof by reduction (show the contrapositive)

• transform an attack on G into an attack on f

• if algorithm A breaks G , then algorithm S[A, f ] breaks f

• S[A, f ] is the (constructive) reduction
• Question 2: what is S[A, f ]?
• Question 3: what is S[A, f ]?
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Why We Care About these Questions

• very important for impossibility results / separations
• i.e., much weaker versions of P exists 6⇒ Q exists
• what exactly is being ruled out?
• . . . and what is left to try?
• impossibility results are inspiring

• enforces precise definitions of primitives
• “we separate xyz from OWFs. . . ”

• more black box, more efficient, more practical (usually)

• better understanding of a fundamental technique in our field
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Notions of Reductions
f G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,
[RTV04])

• three∗ types of reductions:
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Notions of Reductions
f G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,
[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .
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Notions of Reductions
f G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,
[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S:

order switched

if Af

f oracle

breaks G f , then S f

no A oracle

breaks f .
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Notions of Reductions
f G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,
[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A

no f oracle

breaks G f , then S f breaks f .
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Notions of Reductions
f G [f ]

S[A, f ] A

constr.

red.

• Defined by Reingold, Trevisan, and Vadhan (TCC ’04,
[RTV04])

• three∗ types of reductions:

fully black box. ∃S∀A: if A breaks G f , then SA,f breaks f .

semi black box. ∀A∃S: if Af breaks G f , then S f breaks f .

weakly black box. ∀A∃S: if A breaks G f , then S f breaks f .
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In This Work

• even more, fine-grained notions
• . . . derived in a systematic way
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In This Work

• even more, fine-grained notions
• . . . derived in a systematic way

• consider, for example,
• reduction makes non-black-box use of primitive, but black-box
use of adversary (think meta reductions)

• efficient primitives and/or adversaries
• black-box use, but partial information (run time, #queries,
. . . )

• [RTV04] too coarse to capture such differences
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CAP
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Three Questions: A Short Encoding
f G [f ]

S[A, f ] A

constr.

red.
Q1: what is G [f ]?

Q2: what is S[A, f ]?

Q3: what is S[A, f ]?
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Three Questions: A Short Encoding
f G [f ]

S[A, f ] A

constr.

red.
Q1: what is G [f ]?

C
Q2: what is S[A, f ]?

Q3: what is S[A, f ]?
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Three Questions: A Short Encoding
f G [f ]

S[A, f ] A

constr.

red.
Q1: what is G [f ]?

C
Q2: what is S[A, f ]?

A
Q3: what is S[A, f ]?

P
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Three Questions: A Short Encoding
f G [f ]

S[A, f ] A

constr.

red.
Q1: what is G [f ]?

C
Q2: what is S[A, f ]?

A
Q3: what is S[A, f ]?

P

• C ,A,P ∈ {N,B}

• Non black box / Black box
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Obtaining Actual Definitions
f G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”
what is S[A, f ]? B
what is S[A, f ]? B
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Obtaining Actual Definitions
f G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”
what is S[A, f ]? B “∃S” ≺ “∀A”
what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃G”, “∃S”≺ “∀f ”, “∀A”
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Obtaining Actual Definitions
f G [f ]

S[A, f ] A

constr.

red.

example: BBB

1. what is G [f ]? B “∃G” ≺ “∀f ”
what is S[A, f ]? B “∃S” ≺ “∀A”
what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃G”, “∃S”≺ “∀f ”, “∀A”

3. ∃G ,S ∀f ,A Af ,G f
breaks G f =⇒ SAf

,f breaks f
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Obtaining Actual Definitions
f G [f ]

S[A, f ] A

constr.

red.

example: NBB

1. what is G [f ]? N “∀f ” ≺ “∃G”
what is S[A, f ]? B “∃S” ≺ “∀A”
what is S[A, f ]? B “∃S” ≺ “∀f ”

2. “∃S”≺ “∀f ”≺ “∃G” and “∃S”≺ “∀A”

3. ∃S ∀f ∃G∀A Af ,G f
breaks G f =⇒ SAf

,f breaks f
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Obtaining Actual Definitions (cont’d)
f G [f ]

S[A, f ] A

constr.

red.

Name Summary of definition

BBB ∃G ∃S ∀f ∀A ((G f
,Af ) ⇒ (f ,SA,f ))

BNB ∃G ∀A ∃S ∀f ((G f
,Af ) ⇒ (f ,SA,f ))

BBN ∃G ∀f ∃S ∀A ((G f
,Af ) ⇒ (f ,SA,f ))

BNN ∃G ∀f ∀A ∃S ((G f
,Af ) ⇒ (f ,SA,f ))

NBB ∃S ∀f ∃G ∀A ((G f
,Af ) ⇒ (f ,SA,f ))

NBN ∀f ∃G ∃S ∀A ((G f
,Af ) ⇒ (f ,SA,f ))

NNN ∀f ∃G ∀A ∃S ((G f
,Af ) ⇒ (f ,SA,f ))

see page 305 of the proceedings (Part I)
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Basic Relations

BBB

BBN NBB

im
p
lication

(strict)
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There is More. . .

• adversaries A can be PPT or inefficient
• [RTV04]: mixed
• here: inefficient up to now

• all previous notions can be considered for efficient adversaries

• shorthand: CAPa, restricted quantification ∀PPTA
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Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBB
BBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa
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Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBB
BBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa

relativizing (e.g., [IR89])

fully

relativizing

semi

∀∃-semi

weakly

∀∃-weakly

free
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Another Dimension

BBB

BBN

BNN

NNNa

NNBa

NBBa

NNN

NNB

NBB
BBBa

BBNa

BNNa

BNB

NBN

BNBa

NBNa

relativizing (e.g., [IR89])

note: not all CAPa implications are strict
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Neither B nor N
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Parameterized Reductions

• consider the Goldreich–Levin
hardcore bit [GL89]

• reduction requires success
probability of adversary
(but nothing else)

• black box? non black box?

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN
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Parameterized Reductions

• consider the Goldreich–Levin
hardcore bit [GL89]

• reduction requires success
probability of adversary
(but nothing else)

• black box? non black box?

BBB

BBN

BNN

NNN

NNB

NBBBNB

NBN

somewhere here?

• parameterized reduction

• here: par(A) := success probability

• BBB w/ param: Af ,G f
breaks G f =⇒ SAf

,f (par(A)) breaks f

→ parameters made explicit

16



Summary

• things I forgot to tell you
• CAPp: efficient primitives
• CAPap: efficient adversaries and efficient primitives
• careful when defining primitives

17



Summary

• things I forgot to tell you
• CAPp: efficient primitives
• CAPap: efficient adversaries and efficient primitives
• careful when defining primitives

• things to remember
• given any reduction/separation, ask three (five) questions
• “impossibility” rarely means impossible
• look for hidden parameters
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The End

Thank you!

?
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