Notions of Black-Box Reductions, Revisited

ASIACRYPT 2013

Paul Baecher, Christina Brzuska, Marc Fischlin

Introduction

The Cryptographic Zoo

PRP

PRF

MAC

MPC

OWF

PRG

CRHF

PKE

KA

OWP

COM

- basic issues in cryptography
- what can be built from what?
- how (efficient)?

A Typical Theorem in Cryptography

Theorem: Let f be a P. Then construction $G[f]$ is a Q.

Question 1: what is $G[f]$?

A Typical Theorem in Cryptography

Theorem: Let f be a P. Then construction $G[f]$ is a Q.

Question 1: what is $G[f]$?

- construction G uses f as an oracle $\left(G^{f}\right)$
- construction G uses f in some constricted way
- construction G uses f 's code
- ???

A Typical Theorem in Cryptography

Theorem: Let f be a P. Then construction $G[f]$ is a Q.

(corollary: if P exists, then Q exists.)

Question 1: what is $G[f]$?

- construction G uses f as an oracle $\left(G^{f}\right)$
- construction G uses f in some constricted way
- construction G uses f 's code
- ???

Proving the Theorem

Theorem: Let f be a P. Then construction $G[f]$ is a Q.

- almost always: proof by reduction (show the contrapositive)
- transform an attack on G into an attack on f
- if algorithm \mathcal{A} breaks G, then algorithm $\mathcal{S}[\mathcal{A}, f]$ breaks f

Proving the Theorem

Theorem: Let f be a P. Then construction $G[f]$ is a Q.

- almost always: proof by reduction (show the contrapositive)
- transform an attack on G into an attack on f
- if algorithm \mathcal{A} breaks G, then algorithm $\mathcal{S}[\mathcal{A}, f]$ breaks f
- $\mathcal{S}[\mathcal{A}, f]$ is the (constructive) reduction
- Question 2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
- Question 3: what is $\mathcal{S}[, f]$?

Why We Care About these Questions

- very important for impossibility results / separations
- i.e., much weaker versions of P exists $\nRightarrow Q$ exists
- what exactly is being ruled out?
- ... and what is left to try?
- impossibility results are inspiring
- enforces precise definitions of primitives
- "we separate xyz from OWFs..."
- more black box, more efficient, more practical (usually)
- better understanding of a fundamental technique in our field

Notions of Reductions

$$
\begin{aligned}
& f \xrightarrow{\text { constr. }} G[f] \\
& \mathcal{S}[\mathcal{A}, f] \underset{\text { red. }}{ } \mathcal{A}
\end{aligned}
$$

- Defined by Reingold, Trevisan, and Vadhan (TCC '04, [RTV04](mixed))
- three* types of reductions:

Notions of Reductions

- Defined by Reingold, Trevisan, and Vadhan (TCC '04, [RTV04](mixed))
- three* types of reductions:
fully black box. $\exists \mathcal{S} \forall \mathcal{A}$: if \mathcal{A} breaks G^{f}, then $\mathcal{S}^{\mathcal{A}, f}$ breaks f.

Notions of Reductions

- Defined by Reingold, Trevisan, and Vadhan (TCC '04, [RTV04](mixed))
- three* types of reductions:
fully black box. $\exists \mathcal{S} \forall \mathcal{A}$: if \mathcal{A} breaks G^{f}, then $\mathcal{S}^{\mathcal{A}, f}$ breaks f. semi black box. $\forall \mathcal{A} \exists \mathcal{S}$: if \mathcal{A}^{f} breaks G^{f}, then \mathcal{S}^{f} breaks f. order switched
 no \mathcal{A} oracle

Notions of Reductions

- Defined by Reingold, Trevisan, and Vadhan (TCC '04, [RTV04](mixed))
- three* types of reductions:
fully black box. $\exists \mathcal{S} \forall \mathcal{A}$: if \mathcal{A} breaks G^{f}, then $\mathcal{S}^{\mathcal{A}, f}$ breaks f. semi black box. $\forall \mathcal{A} \exists \mathcal{S}$: if \mathcal{A}^{f} breaks G^{f}, then \mathcal{S}^{f} breaks f. weakly black box. $\forall \mathcal{A} \exists \mathcal{S}$: if \mathcal{A} breaks G^{f}, then \mathcal{S}^{f} breaks f.

Notions of Reductions

- Defined by Reingold, Trevisan, and Vadhan (TCC '04, [RTV04](mixed))
- three* types of reductions:
fully black box. $\exists \mathcal{S} \forall \mathcal{A}$: if \mathcal{A} breaks G^{f}, then $\mathcal{S}^{\mathcal{A}, f}$ breaks f. semi black box. $\forall \mathcal{A} \exists \mathcal{S}$: if \mathcal{A}^{f} breaks G^{f}, then \mathcal{S}^{f} breaks f. weakly black box. $\forall \mathcal{A} \exists \mathcal{S}$: if \mathcal{A} breaks G^{f}, then \mathcal{S}^{f} breaks f.

In This Work

- even more, fine-grained notions
- ... derived in a systematic way

In This Work

- even more, fine-grained notions
- ... derived in a systematic way
- consider, for example,
- reduction makes non-black-box use of primitive, but black-box use of adversary (think meta reductions)
- efficient primitives and/or adversaries
- black-box use, but partial information (run time, \#queries, ...)
- [RTV04](mixed) too coarse to capture such differences

CAP

Three Questions: A Short Encoding

Q1: what is $G[f]$?

Q2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
Q3: what is $\mathcal{S}[, f]$?

Three Questions: A Short Encoding

Q2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
Q3: what is $\mathcal{S}[, f]$?

Three Questions: A Short Encoding

Q1: what is $G[f]$?

Q2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
Q3: what is $\mathcal{S}[, f]$?

Three Questions: A Short Encoding

Q1: what is $G[f]$?

Q2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
Q3: what is $\mathcal{S}[, f]$?

Three Questions: A Short Encoding

Q1: what is $G[f]$?

Q2: what is $\mathcal{S}[\mathcal{A}$,$] ?$
Q3: what is $\mathcal{S}[, f]$?

- $C, A, P \in\{\mathrm{~N}, \mathrm{~B}\}$
- Non black box / Black box

Obtaining Actual Definitions

$$
\begin{aligned}
& f \xrightarrow{\text { constr. }} G[f] \\
& \mathcal{S}[\mathcal{A}, f] \underset{\text { red. }}{ } \mathcal{A}
\end{aligned}
$$

example: BBB

1. what is $G[f]$? B " $\exists G$ " $\prec \forall f$ " what is $\mathcal{S}[\mathcal{A}$,$] ? \quad \mathrm{B}$ what is $\mathcal{S}[, f]$? $\quad \mathrm{B}$

Obtaining Actual Definitions

example: BBB

1. what is $G[f]$? B " $\exists G$ " $\prec \forall f$ " what is $\mathcal{S}[\mathcal{A}$,$] ? \quad$ B $" \exists \mathcal{S}$ " $\prec ~ " ~ \forall \mathcal{A}$ " what is $\mathcal{S}[, f]$? B " $\exists \mathcal{S}$ " $\prec " \forall f$ "
2. " $\exists G$ ", " $\exists \mathcal{S}$ " $\prec " \forall f ", ~ " ~ \forall \mathcal{A} "$

Obtaining Actual Definitions

example: BBB

1. what is $G[f]$? B " $\exists G$ " $\prec ~ " ~ \forall f "$ what is $\mathcal{S}[\mathcal{A}$,$] ? B " \exists \mathcal{S}^{\prime} \prec " \forall \mathcal{A}$ " what is $\mathcal{S}[, f]$? B " $\exists \mathcal{S}$ " $\prec " \forall f$ "
2. " $\exists G$ ", " $\exists \mathcal{S} " \prec ' \forall f f^{\prime}, ~ " ~ \forall \mathcal{A} "$
3. $\exists G, \mathcal{S} \forall f, \mathcal{A} \quad \mathcal{A}^{f, G^{f}}$ breaks $G^{f} \Longrightarrow \mathcal{S}^{\mathcal{A}^{f}, f}$ breaks f

Obtaining Actual Definitions

example: NBB

1. what is $G[f]$? $N \quad " \forall f$ " \prec " $\exists G^{\prime \prime}$ what is $\mathcal{S}[\mathcal{A}$,$] ? \quad$ " $\exists \mathcal{S}$ " $\prec ~ " \forall \mathcal{A}$ " what is $\mathcal{S}[, f]$? B " $\exists \mathcal{S}$ " $\prec " \forall f "$
2. " $\exists \mathcal{S}$ " $\prec " \forall f^{\prime \prime} \prec " \exists G$ " and $" \exists \mathcal{S}$ " $\prec ~ " ~ \forall \mathcal{A}$ "
3. $\exists \mathcal{S} \forall f \exists G \forall \mathcal{A} \quad \mathcal{A}^{f, G^{f}}$ breaks $G^{f} \Longrightarrow \mathcal{S}^{\mathcal{A}^{f}, f}$ breaks f

Obtaining Actual Definitions (cont'd)

Name	Summary of definition				
BBB	$\exists G$	$\exists \mathcal{S}$	$\forall f$	$\forall \mathcal{A}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{S}, f)\right)$
BNB	$\exists G$	$\forall \mathcal{A}$	$\exists \mathcal{S}$	$\forall f$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{\mathcal { A } , f})\right)$
BBN	$\exists G$	$\forall f$	$\exists \mathcal{S}$	$\forall \mathcal{A}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{S} \mathcal{A}, f)\right)$
BNN	$\exists G$	$\forall f$	$\forall \mathcal{A}$	$\exists \mathcal{S}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{S}, f)\right)$
NBB	$\exists \mathcal{S}$	$\forall f$	$\exists G$	$\forall \mathcal{A}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{S}, f)\right)$
NBN	$\forall f$	$\exists G$	$\exists \mathcal{S}$	$\forall \mathcal{A}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow\left(f, \mathcal{S}^{\mathcal{A}, f}\right)\right)$
NNN	$\forall f$	$\exists G$	$\forall \mathcal{A}$	$\exists \mathcal{S}$	$\left(\left(G^{f}, \mathcal{A}^{f}\right) \Rightarrow(f, \mathcal{\mathcal { A } , f})\right)$

see page 305 of the proceedings (Part I)

Basic Relations

Basic Relations

Basic Relations

There is More. . .

- adversaries \mathcal{A} can be PPT or inefficient
-
- here: inefficient up to now
- all previous notions can be considered for efficient adversaries
- shorthand: CAPa, restricted quantification $\forall \mathrm{PPT} \mathcal{A}$

Another Dimension

Another Dimension

Another Dimension

note: not all CAPa implications are strict

Neither B nor N

Parameterized Reductions

- consider the Goldreich-Levin hardcore bit [GL89]
- reduction requires success probability of adversary
(but nothing else)
- black box? non black box?

Parameterized Reductions

- consider the Goldreich-Levin hardcore bit [GL89]
- reduction requires success probability of adversary (but nothing else)
- black box? non black box?

- parameterized reduction
- here: $\operatorname{par}(\mathcal{A}):=$ success probability
- BBB w/ param: $\mathcal{A}^{f, G^{f}}$ breaks $G^{f} \Longrightarrow \mathcal{S}^{\mathcal{A}^{f}, f}(\operatorname{par}(\mathcal{A}))$ breaks f
\rightarrow parameters made explicit

Summary

- things I forgot to tell you
- CAPp: efficient primitives
- CAPap: efficient adversaries and efficient primitives
- careful when defining primitives

Summary

- things I forgot to tell you
- CAPp: efficient primitives
- CAPap: efficient adversaries and efficient primitives
- careful when defining primitives
- things to remember
- given any reduction/separation, ask three (five) questions
- "impossibility" rarely means impossible
- look for hidden parameters

The End

Thank you!

References

Oded Goldreich and Leonid A. Levin.
A hard-core predicate for all one-way functions.
In STOC 1989 [STO89], pages 25-32.

Russell Impagliazzo and Steven Rudich.
Limits on the provable consequences of one-way permutations.
In STOC 1989 [STO89], pages 44-61.
Omer Reingold, Luca Trevisan, and Salil P. Vadhan.
Notions of reducibility between cryptographic primitives.
In Moni Naor, editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages 1-20, Cambridge, MA, USA, February 19-21, 2004. Springer, Berlin, Germany.

21st Annual ACM Symposium on Theory of Computing, Seattle, Washington, USA, May 15-17, 1989. ACM Press.

